Challenges in Interpretation of RNA-Seq Data Limit Variant Reclassification

S. Hussain Askree, MBBS, PhD, FACMG, Michael A. Reott Jr., PhD, MB(ASCP), Kirk Stovall, MS, MB(ASCP), Dimiter P. Kolev, BS, MB(ASCP), and William A. Langley, PhD, MT(ASCP).

MNG Laboratories – branch of Labcorp, 5424 Glenridge Dr, Atlanta, GA 30342

Introduction

- Aberrant splicing in approximately half of sequenced transcripts attributed to a to DNA sequencing test menu in molecular diagnosis of rare inherited heterozygous variant in TSC2. disorders. • Approximately half of transcripts show inclusion of part of intron 15 with a novel aberrant splice donor site, predicted to insert 10 aberrant amino acids with a premature stop codon leading to a loss of distal 25 exons of RNA-seq towards reclassification of variants of uncertain significance 2,110 kb (VOUSs). **Patient Tracks** AAAAAAAA **Junctions Track Junction Nove** JUNC00108176 RNA-seq testing was offered for genes with sufficient expression in one of three validated tissue types: blood, skeletal muscle or skin fibroblasts. **Control** TSC2 gene using TruSeq[®] Stranded Total RNA library (Illumina). · · ▪ · · · ■ · · · ■ · · · ▪ · ■ · · · ■ · · c.1599+5G>/ Figure 2. RNA-Seq data showed significant (~50%) aberrant c.1599+5G>A variant near exon 15/intron 15 boundary of 7 the set of tissue-specific reference samples to determine changes in expression levels or changes in splicing patterns. Patient Tracks **Junctions Track** Alignment (HISAT2) Quality Check Inclusion of portion of intron 15 **Junction Novel Transcript Reconstruction & Quantification** (HTSeq) **Quantification** (StringTie) TSC2 gene **Remove low expression genes Extract & Annotate junctions** Figure 3. Zoomed-in view showing significant aberrant splice junctions, attributed to the heterozygous (Regtools) c.1599+5G>A variant in TSC2. Variance stabilizing

- RNA sequence analysis (RNA-seq) provides a powerful companion approach • With case series that illustrate success and challenges, we will discuss utility **Methods** Next Generation Sequencing (NGS) was performed on an Illumina instrument • The sequencing data were aligned with HISAT2[®] and quantified using HTseq[®]. • Using the counts associated with each gene we compared the test sample with

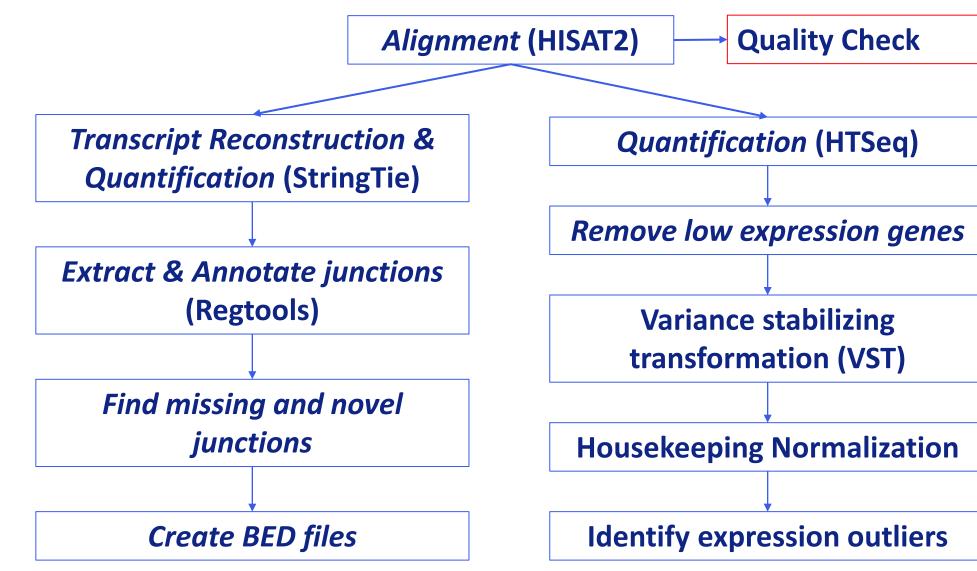


Figure 1. Bioinformatics pipeline to create files for the assessment of splice junction patterns and cumulative gene expression levels.

Intended Use

Detection of significant aberrant splicing patterns and/or expression level changes relative to tissue-matched controls.

- providing supporting evidence that:
 - can be helpful in variant reassessment/reclassification with an updated DNA test result.
 - may suggest the presence of a possible deep intronic cryptic variant (to be confirmed by DNA sequencing).
 - implicate the gene and its associated disease for the patient.
- RNA-Seq tests are NOT intended to
 - identify sequence variants.
 - reclassify variants within RNA-Seq report.

ACMG Annual Clinical Genetics Meeting. March 12-16, 2024. Toronto, Canada

Case	1
------	---

Case 2

- Both normal (canonical) and abnormal (aberrant) splicing due to a hemizygous variant.
 - intron 2 inclusion indicating a partially leaky splice site.
 - skipping of exon 2 that is predicted to lead to an in-frame deletion of 33 amino acids (p.Pro8_Gln40del).
 - creation of a novel GT-donor site at the site of the c.120+5G>T variant that is predicted to lead to an inframe insertion of a Valine (p.Gln40 Leu41insVal).

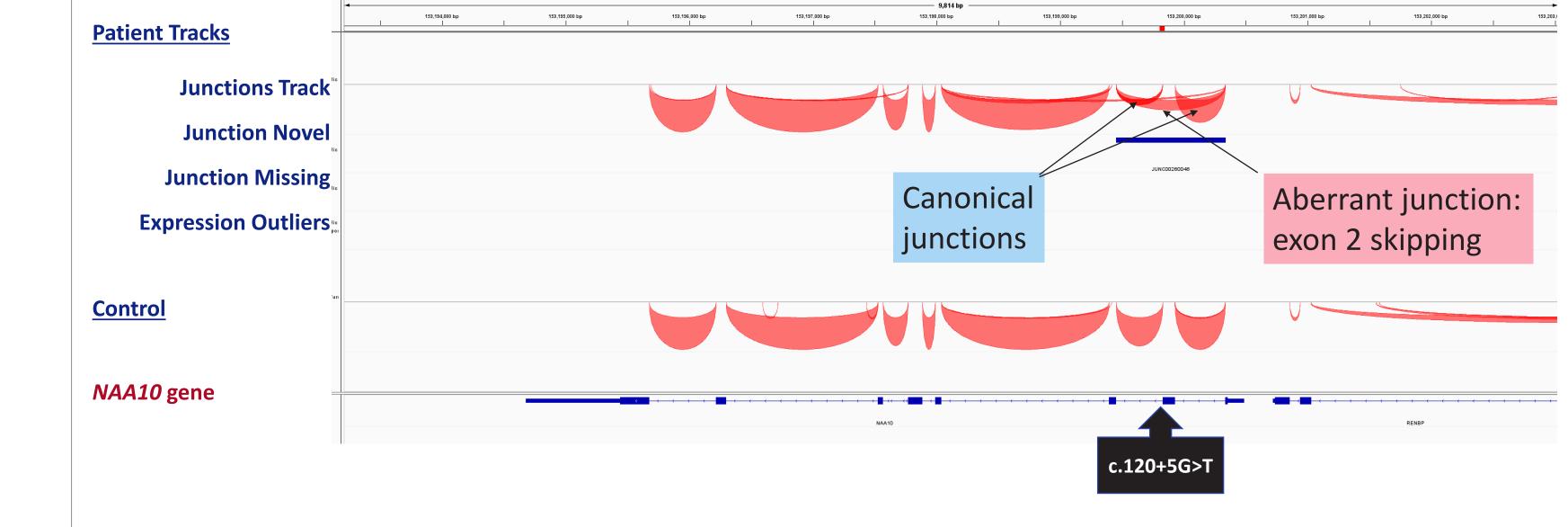
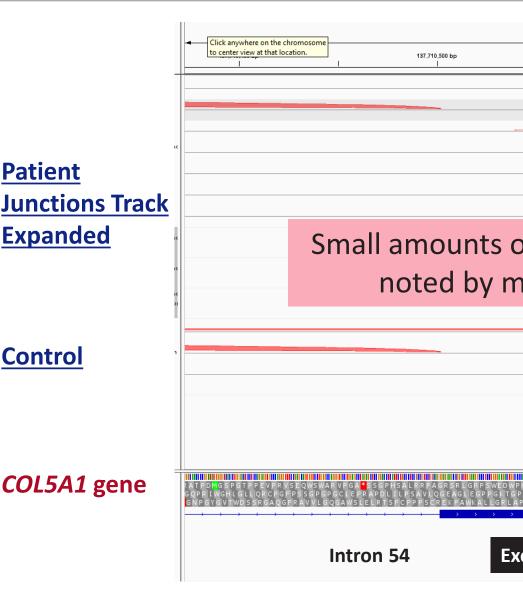


Figure 4. RNA sequencing data showed partial aberrant splicing due to the hemizygous c.120+5G>T variant near exon2/intron 2 boundary of NAA10.


———— 45 kb —	2,120 kb 	2,130 kb 	2.140 kb I
	Aberra	ant splicing with novel	junction
· · · · · · · · · · · · · · · · · · ·	────┨───┨──┨──┨──	᠈╶╶╸┫╕╸╡┫╕<mark>╴╶╶╻╸╴</mark>┫┫╕╸┫╶╶╶╻╸╡ ┅╶┅╴┫ <mark>╴╶</mark>	▋→▋→▋→→┼┼┼┣━━━━┫█┥┫┼╝┥
TSC2			PKD1 NR_13
soli	ring du	e to the heterozygous	
splic SC2.	•	e to the heterozygous	
-		e to the heterozygous	2,114.800 bp
rsc2.			2,114,800 bp
rsc2.			2,114,800 bp
rsc2.		2,114,700 bp	2,114,800 bp
rsc2.	2,114,800 bp	2.114,700 bp	

canonical junctions for exons 1-2 and exons 2-3 were observed, comprising approximately half of the total.

Case 3

- COL5A1.
 - Junctions skipping exon 56.

		137,710,500 bp	1	37,710,600 ър		137,710,800 Бр	137,710,900 b	מו	137.711.000 ър
Dationt Tracks			1				1	۳ ۱	
Patient Tracks	nr								
	ιτ 11 11								
<u>Control</u>									
COL5A1 gene	A T P D MG S P G T P P E V P R V S E Q W S W A R V P G J G Q P R I WG H L G L L Q R C P G F P S S G P G P G C L E G N P G Y G V T W D S S R G A Q G F R A V V L G Q G A W S	A <mark>9</mark> 55 G PH S A L R R PA G R S R L G R P S W P R A P D L I L P S A V L Q G E A G L E G P P G S L E L R T S F C P P P S C R E K PA WK A L L (VED WP HR P P G G P WE AR T G WP S F G K T G P I G P Q G A P G K P G P D G L R G R L A P S A P R G P L G S P D R M A F E	R D F W P C G E S A V R G R G V A E W R D G G P A T H A G I P G P V V S R L S G A E G L P S G G T G D Q Q L M G S L A L W S V G C E G Q R G C R V E G R G T S N S C	ER L C VS GR TR SPR I PR PGR S PR PH G SS V S V FQ GE Q G L P G S PG P D G P P G PM R A S L C FR ENK V SQD P Q A R T V P P A PW	ESHSSWEACH VG LRHPKPQGGCLS SHIPHGEHSGWDD FATQSPKDEOSDF VTFLMVSIAGGMTSPPKAPRMRTLI	PCLLPQGPPGLPGLKGDSGPKGEKVPG PASSHRVPQDFPASKELLVPKVKR [®] EC PLPPPTGSPRTSRPQRRFWSQR [®] KGKR	ASLPQQL <mark>Q</mark> LGAFKFVAVGLKLNKI PPCPSNCDSGPSNLWPWVSNSTS GLPAPATVTRGLQICGRGSQTQQA	LLIRHLNYSSTCCRLVYGNLRGDKGKOTRCYCGLAPA S*SVT*MCQAPAAGWWWGT*GVTKENRHAVFEAWPLP LDPSPKCVKHLLQAGGGEPEG*QRKIDTLCLRLGPCI
	Intron 5	·····································	Exon 55	Intron 55	Exon 56	Intron 56	Exon 57	Intron 5	
		•			COL5A1			introl 3	
				c.4	339-3C>G				
Figure 5. I	RNA-Seg and	alvsis did	not mak	e anv calls	for aberra	nt splicing	at or arou	nd hetero	zygous c.4339-
_	ant at the in	-		-					
	Click anywhere on the chromosome to center view at that location.	137,710,500 bp I	137,1 I	710.600 bp I I	137,710,700 bp	137,710,800 bp I	137,710,900 bp I I	15	37,711,000 bp 137,711
		137,710,500 bp I	137,1	710,600 bp	728 bp	137,710,800 Бр I	137,710,900 bp 	11	37,711,000 bp 137,711 │ │ │
Patient		137,710,500 bp I	137,i	710,600 bp	728 bp	137.710.800 bp. I	137.710.900 Бр 	13 1	37,711,000 bp 137,711
Patient Junctions Track	It content view at that location.	137,710,500 bp I	137.]	710,600 bp	728 bp	137.710.800 bp	137.710.900 Бр I I	1	37.711.000 bp 137.711
	It conterview at that location.	137,710,500 bp			728 bp	137,710,800 bp I	137,710,900 bp		37.711.000 bp 137.711
Junctions Track	It conterview at that location.		of aberra	nt splicing	728 bp	137.710.800 bp I	137.710.900 bp		37,711,000 bp 137,711
Junctions Track Expanded	It conterview at that location.	all amounts	of aberra	nt splicing	728 bp	137.710.800 bp	137,710,900 bp		37.711.000 bp 137.711
Junctions Track	It conterview at that location.	all amounts	of aberra	nt splicing	728 bp	137,710,800 bp	137,710,900 bp		37.711.000 bp 137.711
Junctions Track Expanded	It conterview at that location.	all amounts	of aberra	nt splicing	728 bp	137,710,800 bp	137,710,900 bp		37.711.000 bp 137.711
Junctions Track Expanded Control	It conterview at that location.	all amounts	of aberra	nt splicing eview					37.711.000 bp 137.711
Junctions Track Expanded	It conterview at that location.	all amounts	of aberra	nt splicing eview					
Junctions Track Expanded Control	Ito center view at that location. Ito center view at that location.	SSGPHSALRRPAGESELGEPSWE	of aberra	nt splicing eview					
Junctions Track Expanded Control	Ito center view at that location. Ito center view at that location.	SSGPHSALRRPAGESELGEPSWE	of aberra manual re manual re	nt splicing eview		Image: Second	I I I I I I I I I I I I I I I I I I I		
Junctions Track Expanded Control COL5A1 gene	Ito center view at that location. Ito center view at that location.	SSGPHSALRRPAGRSRLGRPSWE RAPDLILPSAVLOGEAGLEGPPGH LELRTSPCPPSCREKPAKALLG	of aberra manual re manual re	nt splicing eview				QQL LGAP KEYA VGLN INKLI IR PSNCDSG PSNL WEWSSNSTSS S MUTTRGLQICGR GS QT QQAL DPS , , , , , , , , , , , , , , , , , , ,	

Conclusions

- from prior DNA sequence analysis are provided.
- variant-of-interest.
- tissue-matched controls.

Approximately 7% of reads show aberrant splicing at exons near heterozygous variant in

• Aberrant splice acceptor site within exon 56.

Majority of junctions are normal (canonical).

• Detection of significant aberrant splicing patterns and/or cumulative expression level changes relative to tissue matched controls can lead to reclassification of VOUSs.

• The best utility of RNA-Seq tests is when there is adequate expression of the gene/s of interest in a validated tissue type (blood, skeletal muscle or skin fibroblasts) and the results

• If the variant-of-interest is hemizygous or homozygous, it allows easier interpretation of the results due to the absence of interference from a normal allele. Typical positive results show aberrant splicing in approximately half of the reads at or across the region of a heterozygous

• In approximately 20% of tested samples, RNA-Seq provided a positive result showing significant aberrant splice pattern or altered cumulative expression level compared with

• Due to the complexity of the data, indeterminate results are equally common (approximately 20% of tested samples) and consistent with partial defects. The clinical significance of those variants in question remains uncertain.