
# Comparison of pan-ethnic and ethnic-based carrier screening panels for individuals of Ashkenazi Jewish descent



Lynne S. Rosenblum, Jennifer Teicher, Zhaoqing Zhou, Natalia Leach, Hui Zhu, Ruth A. Heim Integrated Genetics, Laboratory Corporation of America® Holdings

### I. Introduction

The intent of carrier screening is to identify individuals at risk for a child with a genetic disease. ACMG guidelines currently recommend that individuals of Ashkenazi Jewish descent be screened for carrier status for nine diseases<sup>1</sup>. A joint statement from ACMG, ACOG, NSGC, SMFM, and the Perinatal Quality Foundation acknowledges benefits of screening for more than nine diseases (expanded carrier screening)<sup>2</sup>. Here we analyze detection rates for Ashkenazi Jewish individuals screened by panels with different numbers of diseases, to assess the benefit of disease panels targeted to the Ashkenazi Jewish population.

## II. Materials and Methods

Array-based hybridization and allele-specific primer extension with a custom Illumina Infinium ™ array (IGv1.1) were used to detect 434 mutations in 87 genes that cause 87 diseases or a subset of 147 mutations in 18 genes that cause 18 diseases. Mutations were confirmed by Sanger sequencing. The 87-gene panel was intended for pan-ethnic carrier screening (pan-ethnic panel, Table 1), and the 18-gene panel was intended for Ashkenazi Jewish carrier screening (AJ panel).

The study sample comprised individuals self-identified as Ashkenazi Jewish and their indication for testing was carrier screening with no personal or family history of a genetic disorder. A total of 1150 individuals were tested in the pan-ethnic panel and 1248 individuals were tested in the AJ panel.

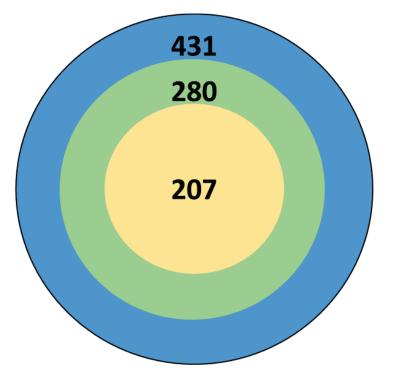
To compare pan-ethnic and AJ-based panels, positive findings for the AJ individuals tested in the pan-ethnic panel were re-analyzed with the 18 genes in the AJ panel and with the 9 genes recommended by ACMG. Similarly, positive findings for the AJ individuals tested in the AJ panel were re-analyzed with the 9 genes recommended by ACMG.

**Table 1.** The 87 genes and diseases included in the pan-ethnic panel.

| Gene          | Disease                                                 | Gene    | Disease                                                                          | Gene    | Disease                                                                   |
|---------------|---------------------------------------------------------|---------|----------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------|
| ABCC8         | Familial Hyperinsulinism, ABCC8-Related                 | DPYD    | Dihydropyrimidine Dehydrogenase Deficiency                                       | MEFV    | Familial Mediterranean Fever                                              |
| ACADM         | MCAD Deficiency                                         | ETHE1   | Ethylmalonic Encephalopathy                                                      | MMAA    | Methylmalonic Acidemia, MMAA-Related                                      |
| ADA           | Adenosine Deaminase Deficiency                          | FAH     | Tyrosinemia Type 1                                                               | MMAB    | Methylmalonic Acidemia, MMAB-Related                                      |
| AGA           | Aspartylglucosaminuria                                  | FANCC   | Fanconi Anemia Group C                                                           | ММАСНС  | Cobalamin C Disease (Methylmalonic Aciduria and Homocystinuria Type cblC) |
| AGL           | Glycogen Storage Disease Type IIIa and IIIb             | FKTN    | Walker-Warburg Syndrome, FKTN-Related                                            | MUT     | Methylmalonic Acidemia, MUT-Related                                       |
| AGXT          | Primary Hyperoxaluria Type 1                            | G6PC    | Glycogen Storage Disease Type Ia                                                 | NBN     | Nijmegen Breakage Syndrome                                                |
| ALDH3A2       | Sjogren-Larsson Syndrome                                | GAA     | Pompe Disease (Glycogen Storage Disease Type II)                                 | NEB     | Nemaline Myopathy, NEB-Related                                            |
| ALDOB         | Hereditary Fructose Intolerance                         | GALC    | Krabbe Disease                                                                   | NPC1    | Niemann-Pick Disease Type C, NPC1-Related                                 |
| ARSA          | Metachromatic Leukodystrophy                            | GALT    | Galactosemia, GALT-Related                                                       | NPC2    | Niemann-Pick Disease Type C, NPC2-Related                                 |
| ASL           | Argininosuccinic Aciduria                               | GBA     | Gaucher Disease                                                                  | NPHS1   | Nephrotic Syndrome, NPHS1-Related (Congenital Finnish Nephrosis)          |
| ASPA          | Canavan Disease                                         | GCDH    | Glutaric Acidemia Type 1                                                         | NPHS2   | Nephrotic Syndrome, NPHS2-Related                                         |
| ASS1          | Citrullinemia Type I                                    | GLDC    | Glycine Encephalopathy, GLDC-Related (Non-Ketotic Hyperglycinemia, GLDC-Related) | PAH     | Phenylalanine Hydroxylase Deficiency (including PKU)                      |
| ATM           | Ataxia-Telangiectasia                                   | GRHPR   |                                                                                  | PCCA    | Propionic Acidemia, PCCA-Related                                          |
| АТР7В         | Wilson Disease                                          | GSS     | Glutathione Synthetase Deficiency                                                | РССВ    | Propionic Acidemia, PCCB-Related                                          |
| BBS1          | Bardet-Biedl Syndrome, BBS1 Related                     | HADHA   | LCHAD Deficiency                                                                 | PCDH15  | Usher Syndrome Type IF                                                    |
| BBS10         | Bardet-Biedl Syndrome, BBS10 Related                    | НВВ     | Beta Hemoglobinopathy, including Sickle Cell Disease                             | PEX1    | Zellweger Syndrome Spectrum, PEX1-Related                                 |
| BCKDHA        | Maple Syrup Urine Disease Type 1A                       | HEXA    | Tay-Sachs Disease                                                                | PEX7    | Rhizomelic Chondrodysplasia Punctata Type 1                               |
| <b>BCKDHB</b> | Maple Syrup Urine Disease Type 1B                       | HEXB    | Sandhoff Disease                                                                 | PKHD1   | Polycystic Kidney Disease, Autosomal Recessive                            |
| BCS1L         | GRACILE Syndrome                                        | HMGCL   | HMG-CoA Lyase Deficiency                                                         | PMM2    | Congenital Disorder of Glycosylation Type 1a                              |
| BLM           | Bloom Syndrome                                          | HLCS    | Holocarboxylase Synthetase Deficiency                                            | PPT1    | Neuronal Ceroid-Lipofuscinosis, PPT1-Related                              |
| CBS           | Homocystinuria, CBS-Related                             | HSD17B4 | D-Bifunctional Protein Deficiency                                                | RMRP    | Cartilage-Hair Hypoplasia                                                 |
| CFTR          | Cystic Fibrosis                                         | IDUA    | Mucopolysaccharidosis Type I (Hurler Syndrome)                                   | SACS    | Autosomal Recessive Spastic Ataxia of Charlevoix-<br>Saguenay (ARSACS)    |
| CLN3          | Neuronal Ceroid-Lipofuscinosis, CLN3-Related            | IKBKAP  | Familial Dysautonomia                                                            | SLC12A6 | Andermann Syndrome                                                        |
| CLN5          | Neuronal Ceroid-Lipofuscinosis, CLN5-Related            | LAMA3   | Junctional Epidermolysis Bullosa, LAMA3-Related                                  | SLC17A5 | Salla Disease                                                             |
| CLN8          | Neuronal Ceroid-Lipofuscinosis, CLN8-Related            | LAMB3   | Junctional Epidermolysis Bullosa, LAMB3-Related                                  | SLC26A2 | Sulfate Transporter-Related Osteochondrodysplasias                        |
| CLRN1         | Usher Syndrome Type III                                 | LAMC2   | Junctional Epidermolysis Bullosa, LAMC2-Related                                  | SLC37A4 | Glycogen Storage Disease Type Ib                                          |
| CTNS          | Cystinosis                                              | LRPPRC  | Leigh Syndrome, French-Canadian Type                                             | SMPD1   | Niemann-Pick Disease Type A/B                                             |
| DHCR7         | Smith-Lemli-Opitz Syndrome                              | MAN2B1  | Alpha-Mannosidosis                                                               | TMEM216 | Joubert Syndrome 2                                                        |
| DLD           | Dihydrolipoamide Dehydrogenase Deficiency (MSUD Type 3) | MCOLN1  | Mucolipidosis Type IV                                                            | TTP1    | Neuronal Ceroid-Lipofuscinosis, TTP1-Related                              |

Blue: the pan-ethnic panel genes that are not also AJ or ACMG Green plus yellow: the subset of 18 AJ panel genes Yellow: the subset of 9 ACMG recommended AJ genes

©2017 Laboratory Corporation of America® Holdings All rights reserved. 17179-0617

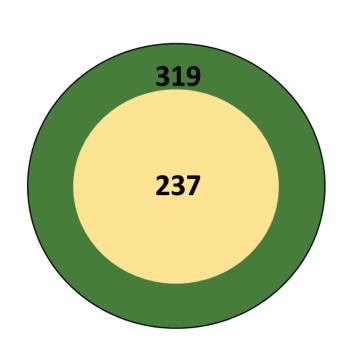



III. Results and Discussion

Table 2. Comparison of positive results for Ashkenazi Jewish individuals tested in the pan-ethnic and AJ panels.

| Test             | Number<br>of genes<br>assessed | individuals | Number of individuals positive: |         |         |         | Total<br>number | %        |
|------------------|--------------------------------|-------------|---------------------------------|---------|---------|---------|-----------------|----------|
| icst             |                                |             | 1 gene                          | 2 genes | 3 genes | 4 genes | positive        | Positive |
| Pan-ethnic panel | 87                             | 1150        | 344                             | 72      | 13      | 2       | 431             | 37.5     |
|                  | 18                             |             | 246                             | 30      | 4       | 0       | 280             | 24.3     |
|                  | 9                              |             | 186                             | 19      | 2       | 0       | 207             | 18.0     |
| AJ panel         | 18                             | 1248        | 259                             | 53      | 5       | 2       | 319             | 25.5     |
|                  | 9                              |             | 203                             | 33      | 1       | 0       | 237             | 18.9     |

Figure 1. Companion diagram for Table 2.




#### Pan-ethnic panel

recommended genes

- N = 1150 AJ individuals tested
- Individuals who were positive for at least one of the 87 pan-ethnic genes
- Individuals who would have been positive if screening was limited to the 18 AJ genes Individuals who would have been positive if

screening was limited to the 9 ACMG



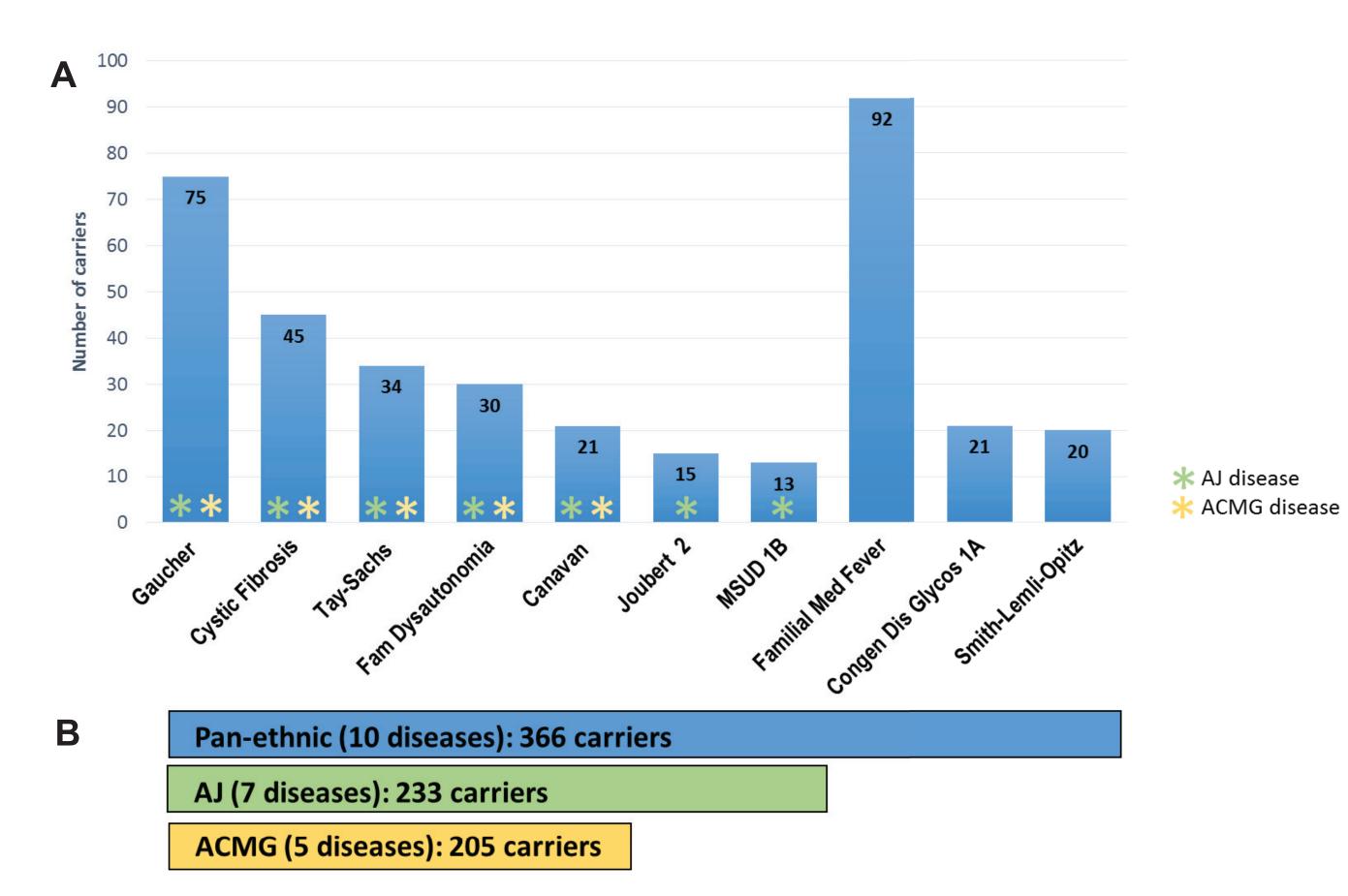
### AJ panel

#### N=1248 AJ individuals tested

- Individuals who were positive for at least one of the 18 AJ genes
- Individuals who would have been positive if screening was limited to the 9 ACMG recommended genes

**DISCUSSION:** In the pan-ethnic panel 431/1150 (37.5%) AJ individuals were carriers of at least one disease. If these individuals were tested in the AJ panel, the detection rate would be 280/1150 (24.3%). If these individuals were tested for the nine ACMG recommended diseases, the detection rate would be 207/1150 (18.0%). The validity of this extrapolation is demonstrated by the equivalent findings that the detection rate is 25.5% for AJ individuals tested with the AJ panel and 18.9% for the ACMG recommended diseases. (Table 2 and Figure 1)

**Table 3.** Twenty-one diseases not included in the ethnic-specific AJ panel, but identified in Ashkenazi Jewish carriers tested in the pan-ethnic panel.


| Disease                                                                   | Gene    | Disease                                            | Gene    |
|---------------------------------------------------------------------------|---------|----------------------------------------------------|---------|
| Beta Hemoglobinopathy, including Sickle Cell Disease                      | HBB     | Neuronal Ceroid-Lipofuscinosis, TTP1-Related       | TTP1    |
| Cobalamin C Disease (Methylmalonic Aciduria and Homocystinuria Type cblC) | MMACHC  | Niemann-Pick Disease Type C, NPC1-Related          | NPC1    |
| Congenital Disorder of Glycosylation Type 1a                              | PMM2    | Niemann-Pick Disease Type C, NPC2-Related          | NPC2    |
| Cystinosis                                                                | CTNS    | Pompe Disease (Glycogen Storage Disease Type II)   | GAA     |
| Dihydropyrimidine Dehydrogenase Deficiency                                | DPYD    | Primary Hyperoxaluria Type 1                       | AGXT    |
| Familial Mediterranean Fever                                              | MEFV    | Smith-Lemli-Opitz Syndrome                         | DHCR7   |
| Galactosemia, GALT-Related                                                | GALT    | Sulfate Transporter-Related Osteochondrodysplasias | SLC26A2 |
| Glycogen Storage Disease Type Ib                                          | SLC37A4 | Tyrosinemia Type 1                                 | FAH     |
| Hereditary Fructose Intolerance                                           | ALDOB   | Wilson Disease                                     | ATP7B   |
| Homocystinuria, CBS-Related                                               | CBS     | Neuronal Ceroid-Lipofuscinosis, TTP1-Related       | TTP1    |
| Mucopolysaccharidosis Type I (Hurler Syndrome)                            | IDUA    |                                                    |         |

**DISCUSSION:** The pan-ethnic panel identified carriers for 38 diseases among Ashkenazi Jews; however, carrier status for only 17 of these diseases could be assessed using the AJ panel. Therefore, 21 "non-AJ" diseases accounted for the difference in carrier rates between the pan-ethnic and AJ panels (Table 3)

Figure 2.

A. The ten diseases with the largest number of carriers among Ashkenazi Jewish individuals screened in the pan-ethnic panel.

B. Comparison showing the subset of these ten diseases and carriers that would be identified if only the 18 AJ panel genes or 9 ACMG recommended genes were assessed.



**DISCUSSION:** Of the ten diseases with the largest number of carriers among Ashkenazi Jewish individuals screened in the pan-ethnic panel, three diseases would have been missed if the AJ panel had been used: familial Mediterranean fever (92 carriers), congenital disease of glycosylation type 1a (21 carriers), and Smith-Lemli-Opitz syndrome (20 carriers). With the ACMGrecommended panel, two more of the most commonly identified diseases would have been missed: Joubert syndrome type 2 (15 carriers) and maple syrup urine disease type 1B (13 carriers). (Figure 2)

### IV. Conclusions

- > A pan-ethnic expanded carrier screening panel of 87 genes increased the carrier detection rate in Ashkenazi Jewish individuals by approximately 50%, compared with a panel of 18 genes considered to be relevant to the Ashkenazi Jewish population.
- > The detection rate would have increased by approximately 100% if the pan-ethnic panel were compared to just the ACMG recommended genes in this data set.
- > These data show that a pan-ethnic panel is more effective than targeted AJ panels in carrier detection among individuals of Ashkenazi Jewish descent.

### V. References

- . Gross SJ, Pletcher BA, for the Professional Practice and Guidelines Committee KG. Carrier screening in individuals of Ashkenazi Jewish descent. Genetics in Medicine. 2008;10(1):54-56.
- . Edwards JG, Feldman G, Goldberg J, et al. Expanded carrier screening in reproductive medicine-points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine. Obstet Gynecol. 2015; 125(3): 653–662.